Большое количество неисправностей возникает из-за проблем с циркуляцией и возвратом масла в компрессор.
Тип холодильного масла, используемого в холодильных системах для смазки компрессоров, зависит от типа компрессора, его производительности, но главное — от используемого фреона. Маслá для холодильного цикла классифицируются как минеральные и синтетические. Минеральное масло используется главным образом с хладагентами CFC (R12) и HCFC (R22) и основано на нафтене или парафине, либо смеси парафина и акрилбензола. Хладагенты HFC (R32, R410a, R407c) не растворяются в минеральном масле, поэтому для них используется синтетическое масло.
При взаимной растворимости холодильное масло смешивается с хладагентом и циркулирует с ним на протяжении всего цикла охлаждения. Масляный картер в компрессоре содержит некоторое количество растворённого хладагента, а жидкий хладагент в конденсаторе содержит небольшое количество растворённого масла. Когда жидкий хладагент испаряется во внутреннем блоке, растворённое масло практически полностью отделяется от хладагента. Когда кондиционер отключается, холодильное масло накапливается не только в компрессоре, но и в любых элементах холодильного контура.
Недостаток использования растворимого масла — это образование пены. Если холодильная машина отключается на длительный период и температура масла в компрессоре ниже, чем в других частях, хладагент конденсируется, и бóльшая его часть растворяется в масле. Если в этом состоянии происходит запуск компрессора, то давление в картере падает и растворённый хладагент испаряется, образуя пену. Данный процесс, называемый пенообразованием, приводит к выходу масла из компрессора по нагнетательному патрубку и ухудшению смазки компрессора. Для предотвращения пенообразования устанавливают подогреватель картера компрессора.
Влияние примесей на работу холодильного контура В нашей статье обязательно следует коснуться проблем, возникающих из-за примесей в холодильном контуре:
1. Технологическое масло (машинное масло, масло для сборки). Если в систему, использующую хладагент HFC, попадёт технологическое масло (например, машинное), то такое масло будет отделяться, образуя хлопья и вызывая засор капиллярных трубок.
2. Вода. Если в систему охлаждения, использующую хладагент HFC, попадает вода, то повышается кислотность масла и происходит разрушение органических материалов, используемых в двигателе компрессора. Всё это приводит к разрушению и пробоям изоляции электродвигателя, засорению капиллярных трубок и т. д.
3. Механический мусор и грязь. Возникающие проблемы: засорение фильтров и капиллярных трубок, разложение и отделение масла, разрушение изоляции электродвигателя компрессора.
4. Воздух. Результат попадания большого количества воздуха (например, систему заправили без вакуумирования): аномальное давление, повышенная кислотность масла, пробой изоляции компрессора.
5. Примеси других хладагентов. Если в систему охлаждения попадает большое количество хладагентов различного типа, возникают аномальные рабочие давление и температура. Следствием чего является повреждение системы.
6. Примеси других холодильных масел. Многие холодильные масла не смешиваются друг с другом и выпадают в осадок в виде хлопьев. Хлопья забивают фильтры и капиллярные трубки, снижая расход фреона в системе, что ведёт к перегреву компрессора.
Для чего необходимо масло в холодильном контуре? Для смазки компрессора. И находиться масло должно именно в компрессоре. В обычной сплит-системе масло свободно циркулирует вместе с фреоном и равномерно распределяется по всему холодильному контуру. У систем VRF холодильный контур слишком большой, чтобы масло равномерно распределилось по нему. Поэтому первое устройство для возврата масла обратно в компрессор — это сепаратор масла в наружном блоке. Сепараторы масла ставятся на нагнетательной трубе компрессора. Бóльшая часть масла оседает в сепараторе и возвращается по отдельному маслопроводу в картер компрессора. Это устройство значительно улучшает режим смазки компрессора и в конечном итоге повышает надёжность системы.
Примеры из практики
Влияние примесей в холодильном масле на работу систем кондиционирования или холодоснабжения не исчерпывается созданием перечисленных выше проблем.
1. Регулярный выход из строя компрессоров на системе VRF Проблема: Смонтирована VRF-система кондиционирования воздуха. Дозаправка системы, параметры работы, конфигурация трубопроводов — всё в норме. Единственный нюанс — часть внутренних блоков не смонтирована, но коэффициент загрузки наружного блока допустимый — 80%. Тем не менее, компрессоры регулярно выходят из строя по причине заклинивания. В чём причина?
Решение: Причина оказалась проста: дело в том, что для монтажа недостающих внутренних блоков были подготовлены ответвления (рис. 4). Эти ответвления были тупиковыми «аппендиксами», в которые циркулирующее вместе с фреоном масло попадало, но обратно выйти уже не могло и накапливалось. Поэтому компрессоры выходили из строя из-за обычного «масляного голодания».
Чтобы этого не происходило, на ответвлениях максимально близко к разветвителям необходимо было поставить запорные вентили. Тогда масло свободно циркулировало бы в системе и собиралось режимом сбора масла.
Полиалкиленгликоли – это синтетические масла, применяемые, например, с хладагентом R134a. Эти масла обладают следующими особенностями:
Проблема: Сплит-система кондиционирования обслуживает зал совещаний на втором этаже. Наружный блок установлен в подвале здания. Отработав абсолютно нормально лето, система осенью выдала заклинивание компрессора. В чём причина, если перепад высот, температура в подвале, количество фреона — всё в норме?
Решение: Причина выхода из строя наружного блока была в отсутствии маслоподъёмной петли на газовом трубопроводе. Масло — жидкость, поэтому разделение фреона и масла может произойти лишь в движущемся потоке и только когда фреон находится в газовой фазе. Конкретно в этом случае в летний период система работала в режиме охлаждения. Наружный блок располагается ниже внутреннего, поэтому масло вместе с жидким фреоном нормально поднималось во внутренний блок. Затем фреон переходил в газовую фазу и возвращался. Масло самотёком тоже возвращалось обратно в наружный блок. То есть в режиме «холод» проблем не было.
Осенью блок переключили в режим «тепло» и направление движения фреона изменилось: от наружного блока в газовой фазе фреон поднимался к внутреннему блоку. Масло отделялось от фреона на вертикальных участках и оставалось на стенках газовой трубы, постепенно накапливаясь. Далее компрессор испытывал «масляное голодание» и выходил из строя.
Для фреонов R410a и R32 маслоподъёмные петли рекомендуется ставить через каждые 10 м вертикальных участков. Для фреонов R22 и R407c маслоподъёмные петли рекомендуется ставить через 5 м вертикальных участков.
Физический смысл маслоподъёмной петли сводится к накоплению масла перед вертикальным подъёмом. Масло скапливается в нижней части трубы и постепенно перекрывает отверстие для пропуска фреона. Газообразный фреон увеличивает свою скорость в свободном сечении трубопровода, захватывая при этом жидкое масло. При полном перекрытии сечения трубы маслом фреон выталкивает масло, как пробку, до следующей маслоподъёмной петли.